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Preface

This book is intended for beginning courses in finite elements (FE) that are oriented to-
ward users of the method. The courses envisioned emphasize the behavior of FE and in-
clude computational work in which problems are solved by means of commercial soft-
ware and the computed results are critically examined. The instructor may often sit with
students at the computer to offer advice and to monitor their skill in modeling and assess-
ment of results. The courses would use computational problems as vehicles to teach
proper use of FE, rather than use FE as a way to solve certain problems. The book pre-
sents a modest amount of theory, discusses the nature of FE solutions, offers modeling
advice, suggests computational problems, and emphasizes the need for checking the com-
puted results. Problem areas treated are common in mechanical engineering and related
disciplines. Suggested computational problems include topics often treated in a second
course in stress analysis, such as spinning disks and elastic foundations. The computa-
tional problems usually have simple geometry, so that FE may be emphasized rather than
details of data preparation. Some instructors especially those who teach more advanced
students, may wish to devise problems of a more “real world” nature, despite their greater
complexity.

Several commercial FE programs are available for use on microcomputers and work-
stations. This book is not tailored to any particular FE program and therefore does not
discuss the formalisms of input data preparation. Suitable software will have most of the
following features: capability in static stress analysis, structural dynamics. vibration, and
heat transfer; a good library of elements; some node and element generation capability;
help screens; plotting and animation of displaced shapes; contour plotting of computed
stresses without nodal averaging. The software must be easy to use, at the expense of ver-
satility if necessary, so that time will not be wasted in learning procedures peculiar to a
certain code but having little to do with insight into the FE method.

Many powerful analytical tools are readily available in the form of computer software.
Engineers do not have time to study the theory of all these tools, and undergraduates usu-
ally study theory with little enthusiasm. For undergraduate and graduate students alike, it
appears that study of only the theory of FE confers no ability in the use of FE. Theory
cannot be ignored, however; an engineer must understand the nature of the analytical
method as well as the physical nature of the phenomenon to be studied because computer
implementation makes it all too easy to choose inappropriate options or push an analyti-
cal method beyond its limits of applicability. Fortunately, the user of FE software need
not understand all its details. Mainly, the FE user should grasp the physical problem, un-
derstand how FE’s behave, know the limitations of the theory on which they are based,
and be able and willing to check results for correctness. The checking phase relies more
on physical understanding of the problem than on knowledge of FE.

The presentation in this book presumes a knowledge of elementary matrix algebra and
the level of physical understanding that a good student should have after completing a
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vi Nonlinearity in Stress Analysis

first course in mechanics of materials. This is adequate preparation for a one-semester
course in the practice of FE, during which students will inevitably be exposed to concepts
of stress analysis not treated in an elementary mechanics of materials course. The under-
standing they gain by working with these problems will be primarily physical but will be
helpful if theory is to be studied subsequently. In my opinion students in a beginning
course learn theory only if forced to do so, and then with little understanding of it. Only
later, when the nature of a problem area has become familiar, can theory be understood
and its practical value appreciated. These remarks are not intended to imply that the book
is unsuitable for students who have advanced knowledge of stress analysis theory. In my
experience, a student at any level may be deficient in physical understanding, and gradu-
ate students make many of the modeling mistakes also made by undergraduates.

The beginning course I teach is taken by seniors. We currently discuss most of
Chapters 1 through 7 and the first four articles of Chapter 9. Isoparametric elements and
Sections 5.5 and 6.6 are omitted. For this course I find that previous exposure to the theo-
ries of elasticity, plates, shells, and vibrations is not necessary because the essential phys-
ical behavior of such problems is easily grasped: flat plates can stretch or bend; curved
plates (shells) can simultaneously stretch and bend; examples of vibration are common-
place (e.g., a bell). If courses in these areas were prerequisites, few would enroll in the
FE course. Students would then have education in neither FE nor problems to which FE
analyis is applied. Yet after graduation they will use FE whether or not they are prepared
to do so.

In addition to serving as the primary text in a first FE course, the book should be use-
ful as an adjunct text in a second FE course that considers theory in more detail, and in
other courses such as vibrations where the solution of practical problems is considered
important. It is in this context that the latter part of Chapter 9 (Vibration and Dynamics)
and Chapter 10 (Nonlinearity in Stress Analysis) seem most appropriate. Practicing engi-
neers as well as students may find that the book contains useful suggestions for modeling
and solution strategy.

Several reviewers of the manuscript made many good suggestions. Their contributions
are gratefully acknowledged. Thanks are also due to Pat Grinyer, who made it unneces-
sary for me to update my technical typing skills.

Robert D. Cook
Madison, Wisconsin
July 1994
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Notation

Symbols most often used in stress analysis appear in the following list. Matrices and vec-
tors are denoted by boldface type.

LATIN SYMBOLS

A Cross-sectional area

B Element strain displacement matrix; £ = Bd

C Constraint matrix, damping matrix

D,d Nodal d.o.f., structure (global) and element, respectively
D Amplitudes of structure (global) d.o.f. in vibration

d.o.f. Degrees of freedom

E Material property matrix, as in o= Eg

E Elastic modulus

f Cyclic frequency of vibration, f= w/27

G Shear modulus

I Unit (or identity) matrix

1 Moment of inertia of cross-sectional area

J Jacobian matrix of an isoparametric element

Kk Stiffness matrix, structure (global) and element, respectively
L Length

M,m Mass matrix, structure (global) and element, respectively
N Element shape (or interpolation) function matrix

p Pressure

q Distributed load along a line or on a surface

R Vector of nodal loads applied to a structure

T A transformation matrix

T Temperature; also period of vibration (7'= 1/f)
K Thickness or time

u Vector of displacement components, u={u v w}

wu,w Components of displacement at an arbitrary material point

1% Volume
z Vector of scale factors of vibration modes

GREEK SYMBOLS

Generalized coordinate (amplitude of a displacement mode)
Coefficient of thermal expansion

Vector of strains; for example, €= {g, &, 7,} in the xy plane
An error measure, applied to the computed stress field

Rotation angles about x, y, and z axes, respectively

Poissen’s ratio

Damping ratio ¢/c. in dynamic analyses

“Natural” coordinates used for isoparametric elements

Mass density or radius of curvature

Vecter of stresses; for example, 6= {0, 0, 1} inthe xy plane
von Mises or “effective” stress

Modal matrix; its columns are vibration modes D,

Naturz! frequency of vibration (radians per second)

g
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CHAPTER ]

Introduction

This chapter introduces concepts and procedures that are discussed in detail in subse-
quent chapters. The finite element (FE) analysis procedure described in Section 1.3 is
used in example applications at the ends of Chapters 2, 3, 6, 7, 8, 9, and 10. Chapter 1
closes with a review of elementary matrix algebra, which is used throughout the book.

1.1 THE FINITE ELEMENT METHOD

The FE method was developed more by engineers using physical insight than by mathe-
maticians using abstract methods. It was first applied to problems of stress analysis and
has since been applied to other problems of continua. In all applications the analyst seeks
to calculate a field quantity: in stress analysis it is the displacement field or the stress
field; in thermal analysis it is the temperature field or the heat flux; in fluid flow it is the
stream function or the velocity potential function; and so on. Results of greatest interest
are usually peak values of either the field quantity or its gradients. The FE method is a
way of getting a numerical solution to a specific problem. A FE analysis does not pro-
duce a formula as a solution, nor does it solve a class of problems. Also, the solution is
approximate unless the problem is so simple that a convenient exact formula is already
available.

An unsophisticated description of the FE method is that it involves cutting a structure
into several elements (pieces of the structure), describing the behavior of each element in
a simple way, then reconnecting elements at “nodes” as if nodes were pins or drops of
glue that hold elements together (Fig. 1.1-1). This process results in a set of simultaneous
algebraic equations. In stress analysis these equations are equilibrium equations of the
nodes. There may be several hundred or several thousand such equations, which means
that computer implementation is mandatory.

A more sophisticated description of the FE method regards it as piecewise polynomial
interpolation. That is, over an element, a field quantity such as displacement is interpo-
lated from values of the field quantity at nodes. By connecting elements together, the
field quantity becomes interpolated over the entire structure in piecewise fashion, by as
many polynomial expressions as there are elements. The “best” values of the field quan-
tity at nodes are those that minimize some function such as total energy. The minimiza-
tion process generates a set of simultaneous algebraic equations for values of the field
quantity at nodes. Matrix symbolism for this set of equations is KD = R, where D is a
vector of unknowns (values of the field quantity at nodes), R is a vector of known loads,
and K is a matrix of known constants. In stress analysis K is known as a “stiffness ma-
trix.”
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Typical
element

/

Typical
node

Fig. 1.1-1. A coarse-mesh. two-dimen-
sional model of a gear tooth. All nodes
and elements lie in the plane of the paper.

The power of the FE method is its versatility. The structure analyzed may have arbi-
trary shape, arbitrary supports, and arbitrary loads. Such generality does not exist in clas-
sical analytical methods. For example, temperature-induced stresses are usually difficult
to analyze with classical methods, even when the structure geometry and the temperature
field are both simple. The FE method treats thermal stresses as easily as stresses induced
by mechanical load, and the temperature distribution itself can be calculated by FE.

Preprocessing and Postprocessing. The theory of FE includes matrix manipulations,
numerical integration, equation solving, and other procedures carried out automatically
by commercial software. The user may see only hints of these procedures as the software
processes data. The user deals mainly with preprocessing (describing loads, supports,
materials, and generating the FE mesh) and postprocessing (sorting output, listing, and
plotting of results). In a large software package the analysis portion is accompanied by
the preprocessor and postprocessor portions of the software. There also exist stand-alone
pre- and postprocessors that can communicate with other large programs. Specific proce-
dures of “pre” and “post” are different in different programs. Learning to use them is of-
ten a matter of trial, assisted by introductory notes, manuals, and on-line documentation
that accompanies the software. Also, vendors of large-scale programs offer training
courses. Fluency with pre- and postprocessors is helpful to the user but is unrelated to the
accuracy of FE results produced. This book emphasizes how to use the FE method prop-
erly, not how to use pre- and posiprocessors.

FE Method and the Typical User. The typical user of the FE method asks what kinds
of elements should be used, and how many of them? Where should the mesh be fine and
where may it be coarse? Can the model be simplified? How much physical detail must be
represented? Is the important behavior static, dynamic, nonlinear, or what? How accurate
will the answers be, and how can they be checked? One need not understand the mathe-
matics of FE to answer these questions. However, a competent user must understand how
elements behave in order to choose suitable kinds, sizes, and shapes of elements, and to
guard against misinterpretations and unrealistically high expectations. A user must also
realize that the FE method is a way of implementing a mathematical theory of physical
behavior. Accordingly, assumptions and limitations of theory must not be violated by
what we ask the software to do. In some dynamic and nonlinear analyses, algorithms by
which theory is implemented must be understood, to avoid choosing an inappropriate al-
gorithm, and to avoid interpreting results produced by algorithmic quirks or limitations as
actual physical behavior. Despite all this understanding it is still easy to make mistakes in
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describing a problem to the computer program. Therefore it is also essential that a com-
petent user have a good physical grasp of the problem so that errors in computed results
can be detected and a judgment made as to whether the results are to be trusted or not. An
analyst unable to do even a crude pencil-and-paper analysis of the problem probably does
not know enough about it to attempt a solution by FE!

A Short History of FE Method. In a 1943 paper, the mathematician Courant described
a piecewise polynomial solution for the torsion problem [1.1].* His work was not noticed
by engineers and the procedure was impractical at the time due to the lack of digital com-
puters. In the 1950s, work in the aircraft industry introduced the FE method to practicing
engineers. A classic paper described FE work that was prompted by a need to analyze
delta wings, which are too short for beam theory to be reliable [1.2]. The name “finite el-
ement” was coined in 1960 [1.3, 1.4]. By 1963 the mathemarical validity of the FE
method was recognized and the method was expanded from its structural beginnings to
include heat transfer. groundwater flow, magnetic fields, and other areas. Large general-
purpose FE software began to appear in the 1970s. By the late 1980s the software was
available on microcomputers, complete with color graphics and pre- and postprocessors.
By the mid-1990s roughly 40,000 papers and books about the FE method and its applica-
tions had been published.

Overview of the Remainder of the Book. Chapter 2 considers elements for bar and
beam problems and discusses the mathematical structure of the FE method (the “stiffness
method”). Plane problems are treated in Chapter 3. Chapter 4 discusses special methods
for element formulation and linear static analysis. After studying Chapters 1 through 4
the reader should have enough background to profit from a thorough discussion of how to
use the FE method properly, with attention to planning the model, detecting errors, and
verifying results. This material appears in Chapter 5 and is an elaboration of Section 1.3.
Chapters 6 and 7 discuss general solids, solids of revolution, plates, and shells. Tempera-
ture distribution is considered in Chapter 8, with emphasis on its use in thermal stress
analysis. Vibration and other dynamic problems occupy Chapter 9. Chapter 10 is devoted
to nonlinear problems and buckling. Example applications of the FE method appear near
the ends of most chapters.

1.2 ELEMENTS AND NODES

Finite elements resemble fragments of the structure. Nodes appear on element boundaries
and serve as connectors that fasten elements together. In Fig. 1.2-1, elements are triangu-
lar or quadrilateral areas and nodes are indicated by dots. Except for element midside
nodes along AED and nodes at A, B, and E, each node acts as a connector between two or
more elements. All elements that share a node have the same displacement components at
that node. Lines in Fig. 1.2-1 indicate boundaries between elements. Thus we see ele-
ments with corner nodes only and elements with side nodes as well. Such a mixture of el-
ement types is neither necessary nor common but serves the present discussion.
Superficially, it appears that a FE structure can be produced by sawing the actual
structure apart and then pinning it back together at nodes. Clearly, such an assemblage
would be weak and unrepresentative of the actual structure because of strain concentra-
tions at nodes, sliding of elements on one another, and even gaps that would appear be-

*Numbers in brackets indicate references listed at the back of the book.
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Fig. 1.2-1. (a) A flat bracket modeled by several element types (more types than
would actually be used for this problem). (b) One of the elements, a “constant strain
triangle”. All nodes and elements lie in the plane of the paper.

tween some elements. To avoid these defects and to permit convergence toward exact re-
sults as more and more elements are used in the FE model, each element is restricted in
its mode of deformation. This leads us to ask what kind of behavior can be expected of
each element type. The question is answered repeatedly in subsequent chapters. For now
we discuss only the following abbreviated examples of plane elements, which are dis-
cussed in more detail in Chapter 3. .

Consider the plane triangular element in Fig. 1.2-1b. It does not matter that the origin
of coordinates has been moved from its position in Fig. 1.2-1a. The x and y direction
components of displacement of an arbitrary point within the element are given the names
u and v. In the three-node triangular element each is restricted to be a linear polynomial
inx and y:

u= B+ Box+ Bay (1.2-1a2)

v= L, + Box + oy (1.2-1b)

where the [3; are called “generalized coordinates.” They can be regarded as displacement
amplitudes. As examples, in Eq. 1.2-1a, f, is the amplitude of rigid-body displacement,
and B, and B, are amplitudes of linearly varying displacement, all in the x direction.
Alternative forms of Eqs. 1.2-1 can be written by expressing the f3; in terms of nodal dis-
placements u,, U}, U, U,, U3, and v5. To do so for the element in Fig. 1.2-1b we make the
following substitutions in Egs. 1.2-1:

u=u; and v=v, at x=0 and y=0
u=u, and v=v, at x=a and y=0 (1.2-2)

u=u, and v=v, at x=0 and y=b
Thus, for the element in Fig. 1.2-1b, alternative forms of Egs. 1.2-1 are found to be

x 0y X y
u=|1 -~ — =iy, + —u, + ~u 1.2-3
( p b)‘ PRI (1.2-3a)
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v:(l - ljvl + f—u, + lv3 (1.2-3b)
a b a - b

In either form, Eqs. 1.2-1 or 1.2-3, the displacement field u = u(x, ¥) and v = v{x, y) has
six degrees of freedom, abbreviated d.o.f. That is, six quantities define the deformed con-
figuration, namely, the six f; in Egs. 1.2-1 or the three u; and three v, in Egs. 1.2-3. In
Chapter 3 we will explain that strains are displacement gradients. Therefore

g = % hence ¢, = f3,

ov
£ = g hence g, = fB, (1.2-4)
Yo :%+% hence 7y, = f3;+f;

This three-node element is called a “constant strain triangle” because none of the strains
varies over the element. This means that the element has a very limited response-—it
could not represent the linear strain field of pure bending, for example—but at least there
will be no strain concentrations at nodes. Also, from Egs. 1.2-3 we can conclude that ele-
ment sides will remain straight after deformation. For example, set x = 0 to examine side
I-3 in Fig. 1.2-1b: thus u becomes linear in y and depends only on d.o.f. i, and u;. The
same will be true along this side in the adjacent element. Because deformed sides remain
straight, elements will not gap apart or overlap when load is applied. Similarly, we can
show that v aleng side 1-3 is linear in y and depends only on v, and v, whether we ex-
amine the element on the left or the element on the right of side 1-3. Summing up, it is
possible to demonstrate that the triangular element can display constant strain states and
will deform in a way that is compatible with its neighbors. The same can be demonstrated
for other shapes and types of element. It can be shown that these properties allow exact
results to be approached as a mesh is refined; that is, as more and more elements are used
to model a structure.

Let us also consider briefly a six-node triangle, such as element L somewhat above E
in Fig. 1.2-1a. It has three vertex nodes and three midside nodes. In terms of generalized
coordinates 3, its displacement field is

u= L+ Pox + By + Box + Psxy + o)

1.2-5

v =B+ Box+ Boy + Brox® + Brixy + By ( )
Deformed shapes of sides can be straight or parabolic. Some tedious algebra shows that
the deformed shape of a side depends on d.o.f. of nodes attached to that side but does not
depend on d.o.f. of nodes not attached to that side. Accordingly, the element will be com-
patible with its neighbors because adjacent elements share the same nodes and d.o.f.
along a common side. By applying the differentiation used in Eqgs. 1.2-4, we see that the
six-node element contains constant and linear terms in its strain field. Therefore this ele-
ment can model constant strain states and also linear strain states that arise in pure bend-
ing. Clearly, it is a more competent element than the constant strain triangle. It is also
more complicated, which suggests another choice faced by the user of FE: Is it better to



