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Open channel hydraulics

John Fenton

Abstract

This course of 15 lectures provides an introduction to open channel hydraulics, the generic name for
the study of ows in rivers, canals, and sewers, where the distinguishing characteristic is that the
surface is uncon ned. This means that the location of the surface is also part of the problem, and
allows for the existence of waves – generally making things more interesting!

At the conclusion of this subject students will understand the nature of ows and waves in open
channels and be capable of solving a wide range of commonly encountered problems.
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1. Introduction

The ow of water with an uncon ned free surface at atmospheric pressure presents some of the most
common problems of uid mechanics to civil and environmental engineers. Rivers, canals, drainage
canals, oods, and sewers provide a number of important applications which have led to the theories and
methods of open channel hydraulics. The main distinguishing characteristic of such studies is that the
location of the surface is also part of the problem. This allows the existence of waves, both stationary
and travelling. In most cases, where the waterway is much longer than it is wide or deep, it is possible to
treat the problem as an essentially one-dimensional one, and a number of simple and powerful methods
have been developed.

In this course we attempt a slightly more general view than is customary, where we allow for real uid
effects as much as possible by allowing for the variation of velocity over the waterway cross section. We
recognise that we can treat this approximately, but it remains an often-unknown aspect of each problem.
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This reminds us that we are obtaining approximate solutions to approximate problems, but it does allow
some simpli cations to be made.

The basic approximation in open channel hydraulics, which is usually a very good one, is that variation
along the channel is gradual. One of the most important consequences of this is that the pressure in the
water is given by the hydrostatic approximation, that it is proportional to the depth of water above.

In Australia there is a slightly non-standard nomenclature which is often used, namely to use the word
”channel” for a canal, which is a waterway which is usually constructed, and with a uniform section.
We will use the more international English convention, that such a waterway is called a canal, and we
will use the words ”waterway”, ”stream”, or ”channel” as generic terms which can describe any type of
irregular river or regular canal or sewer with a free surface.

1.1 Types of channel ow to be studied

(b) Steady gradually-varied flow

(a) Steady uniform flow

nd

nd Normal depth

(d) Unsteady flow

(c) Steady rapidly-varied flow

Figure 1-1. Different types of ow in an open channel

Case (a) – Steady uniform ow: Steady ow is where there is no change with time, 0.
Distant from control structures, gravity and friction are in balance, and if the cross-section is constant,
the ow is uniform, 0. We will examine empirical laws which predict ow for given bed slope
and roughness and channel geometry.

Case (b) – Steady gradually-varied ow: Gravity and friction are in balance here too, but when a
control is introduced which imposes a water level at a certain point, the height of the surface varies along
the channel for some distance. For this case we will develop the differential equation which describes
how conditions vary along the waterway.

Case (c) – Steady rapidly-varied ow: Figure 1-1(c) shows three separate gradually-varied ow
states separated by two rapidly-varied regions: (1) ow under a sluice gate and (2) a hydraulic jump.
The complete problem as presented in the gure is too dif cult for us to study, as the basic hydraulic
approximation that variation is gradual and that the pressure distribution is hydrostatic breaks down in the
rapid transitions between the different gradually-varied states. We can, however, analyse such problems
by considering each of the almost-uniform ow states and consider energy or momentum conservation
between them as appropriate. In these sorts of problems we will assume that the slope of the stream
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balances the friction losses and we treat such problems as frictionless ow over a generally-horizontal
bed, so that for the individual states between rapidly-varied regions we usually consider the ow to be
uniform and frictionless, so that the whole problem is modelled as a sequence of quasi-uniform ow
states.

Case (d) – Unsteady ow: Here conditions vary with time and position as a wave traverses the
waterway. We will obtain some results for this problem too.

1.2 Properties of channel ow

z

y

z

minzz

Figure 1-2. Cross-section of ow, showing isovels, contours on which velocity normal to the section is constant.

Consider a section of a waterway of arbitrary section, as shown in Figure 1-2. The co-ordinate is
horizontal along the direction of the waterway (normal to the page), is transverse, and is vertical. At
the section shown the free surface is = , which we have shown to be horizontal across the section,
which is a good approximation in many ows.

1.2.1 Discharge across a cross-section

The volume ux or discharge at any point is

=

Z
=

where is the velocity component in the or downstream direction, and is the cross-sectional area.
This equation de nes the mean horizontal velocity over the section . In most hydraulic applications
the discharge is a more important quantity than the velocity, as it is the volume of water and its rate of
propagation, the discharge, which are important.

1.2.2 A generalisation – net discharge across a control surface

Having obtained the expression for volume ux across a plane surface where the velocity vector is
normal to the surface, we introduce a generalisation to a control volume of arbitrary shape bounded by a
control surface CS. If u is the velocity vector at any point throughout the control volume and n is a unit
vector with direction normal to and directed outwards from a point on the control surface, then u · n on
the control surface is the component of velocity normal to the control surface. If is an elemental area
of the control surface, then the rate at which uid volume is leaving across the control surface over that
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elemental area is u · n , and integrating gives

Total rate at which uid volume is leaving across the control surface =
Z
CS

u · n (1.1)

If we consider a nite length of channel as shown in Figure 1-3, with the control surface made up of

1u
1n̂

2n̂

2u

Figure 1-3. Section of waterway and control surface with vertical ends

the bed of the channel, two vertical planes across the channel at stations 1 and 2, and an imaginary
enclosing surface somewhere above the water level, then if the channel bed is impermeable, u · n = 0
there; u = 0 on the upper surface; on the left (upstream) vertical plane u · n = 1, where 1 is
the horizontal component of velocity (which varies across the section); and on the right (downstream)
vertical plane u · n = + 2. Substituting into equation (1.1) we have

Total rate at which uid volume is leaving across the control surface =

Z
1

1 +

Z
2

2

= 1 + 2

If the ow is steady and there is no increase of volume inside the control surface, then the total rate of
volume leaving is zero and we have 1 = 2.

While that result is obvious, the results for more general situations are not so obvious, and we will
generalise this approach to rather more complicated situations – notably where the water surface in the
Control Surface is changing.

1.2.3 A further generalisation – transport of other quantities across the control surface

We saw that u · n is the volume ux through an elemental area – if we multiply by uid density then
u · n is the rate at which uid mass is leaving across an elemental area of the control surface, with

a corresponding integral over the whole surface. Mass ux is actually more fundamental than volume
ux, for volume is not necessarily conserved in situations such as compressible ow where the density

varies. However in most hydraulic engineering applications we can consider volume to be conserved.

Similarly we can compute the rate at which almost any physical quantity, vector or scalar, is being
transported across the control surface. For example, multiplying the mass rate of transfer by the uid
velocity u gives the rate at which uid momentum is leaving across the control surface, uu · n .

1.2.4 The energy equation in integral form for steady ow

Bernoulli’s theorem states that:

In steady, frictionless, incompressible ow, the energy per unit mass + + 2 2 is constant
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along a streamline,

where is the uid speed, 2 = 2+ 2+ 2, in which ( ) are velocity components in a cartesian
co-ordinate system ( ) with vertically upwards, is gravitational acceleration, is pressure and

is uid density. In hydraulic engineering it is usually more convenient to divide by such that we say
that the head + + 2 2 is constant along a streamline.

In open channel ows (and pipes too, actually, but this seems never to be done) we have to consider
the situation where the energy per unit mass varies across the section (the velocity near pipe walls and
channel boundaries is smaller than in the middle while pressures and elevations are the same). In this
case we cannot apply Bernoulli’s theorem across streamlines. Instead, we use an integral form of the
energy equation, although almost universally textbooks then neglect variation across the ow and refer
to the governing theorem as ”Bernoulli”. Here we try not to do that.

The energy equation in integral form can be written for a control volume CV bounded by a control
surface CS, where there is no heat added or work done on the uid in the control volume:Z

CV| {z }
Rate at which energy is increasing inside the CV

+

Z
CS

( + ) u n

| {z }
Rate at which energy is leaving the CS

= 0 (1.2)

where is time, is density, is an element of volume, is the internal energy per unit mass of uid,
which in hydraulics is the sum of potential and kinetic energies

= +
1

2

¡
2 + 2 + 2

¢
where the velocity vector u = ( ) in a cartesian coordinate system ( ) with horizontally
along the channel and upwards, n is a unit vector as above, is pressure, and is an elemental area
of the control surface.

Here we consider steady ow so that the rst term in equation (1.2) is zero. The equation becomes:Z
CS

³
+ +

2

¡
2 + 2 + 2

¢´
u n = 0

We intend to consider problems such as ows in open channels where there is usually no important
contribution from lateral ows so that we only need to consider ow entering across one transverse face
of the control surface across a pipe or channel and leaving by another. To do this we have the problem
of integrating the contribution over a cross-section denoted by which we also use as the symbol for
the cross-sectional area. When we evaluate the integral over such a section we will take to be the
velocity along the channel, perpendicular to the section, and and to be perpendicular to that. The
contribution over a section of area is then ± , where is the integral over the cross-section:

=

Z ³
+ +

2

¡
2 + 2 + 2

¢´
(1.3)

and we take the± depending on whether the ow is leaving/entering the control surface, because u n =
± . In the case of no losses, is constant along the channel. The quantity is the total rate of
energy transmission across the section.

Now we consider the individual contributions:

(a) Velocity head term 2

R ¡
2 + 2 + 2

¢
If the ow is swirling, then the and components will contribute, and if the ow is turbulent there
will be extra contributions as well. It seems that the sensible thing to do is to recognise that all velocity
components and velocity uctuations will be of a scale given by the mean ow velocity in the stream at
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that point,and so we simply write, for the moment ignoring the coef cient 2:Z ¡
2 + 2 + 2

¢
= 3 =

3

2
(1.4)

which de nes as a coef cient which will be somewhat greater than unity, given by

=

R ¡
2 + 2 + 2

¢
3

(1.5)

Conventional presentations de ne it as being merely due to the non-uniformity of velocity distribution
across the channel:

=

R
3

3

however we suggest that is more properly written containing the other velocity components (and turbu-
lent contributions as well, ideally). This coef cient is known as a Coriolis coef cient, in honour of the
French engineer who introduced it.

Most presentations of open channel theory adopt the approximation that there is no variation of velocity
over the section, such that it is assumed that = 1, however that is not accurate. Montes (1998, p27)
quotes laboratory measurements over a smooth concrete bed giving values of of 1.035-1.064, while
for rougher boundaries such as earth channels larger values are found, such as 1.25 for irrigation canals
in southern Chile and 1.35 in the Rhine River. For compound channels very much larger values may be
encountered. It would seem desirable to include this parameter in our work, which we will do.

(b) Pressure and potential head terms

These are combined as Z
( + ) (1.6)

The approximation we now make, common throughout almost all open-channel hydraulics, is the ”hy-
drostatic approximation”, that pressure at a point of elevation is given by

× height of water above = ( ) (1.7)

where the free surface directly above has elevation . This is the expression obtained in hydrostatics for
a uid which is not moving. It is an excellent approximation in open channel hydraulics except where
the ow is strongly curved, such as where there are short waves on the ow, or near a structure which
disturbs the ow. Substituting equation (1.7) into equation (1.6) givesZ
for the combination of the pressure and potential head terms. If we make the reasonable assumption that

is constant across the channel the contribution becomesZ
=

from the de nition of discharge .

(c) Combined terms

Substituting both that expression and equation (1.4) into (1.3) we obtain

=

µ
+
2

2

2

¶
(1.8)
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which, in the absence of losses, would be constant along a channel. This energy ux across entry and
exit faces is that which should be calculated, such that it is weighted with respect to the mass ow rate.
Most presentations pretend that one can just apply Bernoulli’s theorem, which is really only valid along
a streamline. However our results in the end are not much different. We can introduce the concept of the
Mean Total Head such that

=
Energy ux
×Mass ux

= × = +
2

2

2
(1.9)

which has units of length and is easily related to elevation in many hydraulic engineering applications,
relative to an arbitrary datum. The integral version, equation (1.8), is more fundamental, although in
common applications it is simpler to use the mean total head , which will simply be referred to as the
head of the ow. Although almost all presentations of open channel hydraulics assume = 1, we will
retain the general value, as a better model of the fundamentals of the problem, which is more accurate,
but also is a reminder that although we are trying to model reality better, its value is uncertain to a degree,
and so are any results we obtain. In this way, it is hoped, we will maintain a sceptical attitude to the
application of theory and ensuing results.

(d) Application to a single length of channel – including energy losses

We will represent energy losses by . For a length of channel where there are no other entry or exit
points for uid, we have

out = in

giving, from equation (1.8):

out

µ
+
2

2

2

¶
out
= in

µ
+
2

2

2

¶
in

and as there is no mass entering or leaving, out = in = , we can divide through by and by , as
is common in hydraulics: µ

+
2

2

2

¶
out
=

µ
+
2

2

2

¶
in

where we have written = × , where is the head loss. In spite of our attempts to use
energy ux, as is constant and could be eliminated, in this head form the terms appear as they are used
in conventional applications appealing to Bernoulli’s theorem, but with the addition of the coef cients.

2. Conservation of energy in open channel ow

In this section and the following one we examine the state of ow in a channel section by calculating the
energy and momentum ux at that section, while ignoring the fact that the ow at that section might be
slowly changing. We are essentially assuming that the ow is locally uniform – i.e. it is constant along
the channel, 0. This enables us to solve some problems, at least to a rst, approximate, order.
We can make useful deductions about the behaviour of ows in different sections, and the effects of
gates, hydraulic jumps, etc.. Often this sort of analysis is applied to parts of a rather more complicated

ow, such as that shown in Figure 1-1(c) above, where a gate converts a deep slow ow to a faster shallow
ow but with the same energy ux, and then via an hydraulic jump the ow can increase dramatically in

depth, losing energy through turbulence but with the same momentum ux.

2.1 The head/elevation diagram and alternative depths of ow

Consider a steady ( 0) ow where any disturbances are long, such that the pressure is hydro-
static. We make a departure from other presentations. Conventionally (beginning with Bakhmeteff in
1912) they introduce a co-ordinate origin at the bed of the stream and introduce the concept of ”speci c
energy”, which is actually the head relative to that special co-ordinate origin. We believe that the use of
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that datum somehow suggests that the treatment and the results obtained are special in some way. Also,
for irregular cross-sections such as in rivers, the ”bed” or lowest point of the section is poorly de ned,
and we want to minimise our reliance on such a point. Instead, we will use an arbitrary datum for the
head, as it is in keeping with other areas of hydraulics and open channel theory.

Over an arbitrary section such as in Figure 1-2, from equation (1.9), the head relative to the datum can
be written

= +
2

2

1
2( )

(2.1)

where we have emphasised that the cross-sectional area for a given section is a known function of surface
elevation, such that we write ( ). A typical graph showing the dependence of upon is shown in
Figure 2-1, which has been drawn for a particular cross-section and a constant value of discharge ,
such that the coef cient 2 2 in equation (2.1) is constant.

min

2

1

Surface
elevation

Head =

= +
2

2
1
2( )

=

1

2

Figure 2-1. Variation of head with surface elevation for a particular cross-section and discharge

The gure has a number of important features, due to the combination of the linear increasing function
and the function 1 2( ) which decreases with .

In the shallow ow limit as min (i.e. the depth of ow, and hence the cross-sectional area
( ), both go to zero while holding discharge constant) the value of 2 2 2( ) becomes

very large, and goes to in the limit.

In the other limit of deep water, as becomes large, , as the velocity contribution becomes
negligible.

In between these two limits there is a minimum value of head, at which the ow is called critical
ow, where the surface elevation is and the head .

For all other greater than there are two values of depth possible, i.e. there are two different
ow states possible for the same head.

The state with the larger depth is called tranquil, slow, or sub-critical ow, where the potential to
make waves is relatively small.

The other state, with smaller depth, of course has faster ow velocity, and is called shooting, fast, or
super-critical ow. There is more wave-making potential here, but it is still theoretically possible
for the ow to be uniform.

The two alternative depths for the same discharge and energy have been called alternate depths.
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That terminology seems to be not quite right – alternate means ”occur or cause to occur by turns,
go repeatedly from one to another”. Alternative seems better - ”available as another choice”, and
we will use that.

In the vicinity of the critical point, where it is easier for ow to pass from one state to another, the
ow can very easily form waves (and our hydrostatic approximation would break down).

Flows can pass from one state to the other. Consider the ow past a sluice gate in a channel as
shown in Figure 1-1(c). The relatively deep slow ow passes under the gate, suffering a large
reduction in momentum due to the force exerted by the gate and emerging as a shallower faster

ow, but with the same energy. These are, for example, the conditions at the points labelled 1 and
2 respectively in Figure 2-1. If we have a ow with head corresponding to that at the point 1 with
surface elevation 1 then the alternative depth is 2 as shown. It seems that it is not possible to
go in the other direction, from super-critical ow to sub-critical ow without some loss of energy,
but nevertheless sometimes it is necessary to calculate the corresponding sub-critical depth. The
mathematical process of solving either problem, equivalent to reading off the depths on the graph,
is one of solving the equation

2

2 2( 1)
+ 1| {z }

1

=
2

2 2( 2)
+ 2| {z }

2

(2.2)

for 2 if 1 is given, or vice versa. Even for a rectangular section this equation is a nonlinear tran-
scendental equation which has to be solved numerically by procedures such as Newton’s method.

2.2 Critical ow

A

B

Figure 2-2. Cross-section of waterway with increment of water level

We now need to nd what the condition for critical ow is, where the head is a minimum. Equation (2.1)
is

= +
2

2

2( )

and critical ow is when = 0:

= 1
2

3( )
× = 0

The problem now is to evaluate the derivative . From Figure 2-2, in the limit as 0 the
element of area = such that = , the width of the free surface. Substituting, we have
the condition for critical ow:

2

3
= 1 (2.3)
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This can be rewritten as

( )2

( )
= 1

and as = , the mean velocity over the section, and = , the mean depth of ow, this means
that

Critical ow occurs when
2

= 1 that is, when × (Mean velocity)2

×Mean depth
= 1 (2.4)

We write this as
2 = 1 or = 1 (2.5)

where the symbol is the Froude number, de ned by:

= p = =
Mean velocity
×Mean depth

The usual statement in textbooks is that ”critical ow occurs when the Froude number is 1”. We have
chosen to generalise this slightly by allowing for the coef cient not necessarily being equal to 1, giving
2 = 1 at critical ow. Any form of the condition, equation (2.3), (2.4) or (2.5) can be used. The mean

depth at which ow is critical is the ”critical depth”:

=
2

=
2

2
(2.6)

2.3 The Froude number

The dimensionless Froude number is traditionally used in hydraulic engineering to express the relative
importance of inertia and gravity forces, and occurs throughout open channel hydraulics. It is relevant
where the water has a free surface. It almost always appears in the form of 2 rather than . It might
be helpful here to de ne by writing

2 =
2

3

Consider a calculation where we attempt to quantify the relative importance of kinetic and potential
energies of a ow – and as the depth is the only vertical scale we have we will use that to express the
potential energy. We write

Mean kinetic energy per unit mass
Mean potential energy per unit mass

=
1
2

2

= 12
2

which indicates something of the nature of the dimensionless number 2.

Flows which are fast and shallow have large Froude numbers, and those which are slow and deep have
small Froude numbers. For example, consider a river or canal which is 2m deep owing at 0 5m s 1

(make some effort to imagine it - we can well believe that it would be able to ow with little surface
disturbance!). We have

=
0 5

10× 2 = 0 11 and 2 = 0 012

and we can imagine that the rough relative importance of the kinetic energy contribution to the potential
contribution really might be of the order of this 1%. Now consider ow in a street gutter after rain. The
velocity might also be 0 5m s 1, while the depth might be as little as 2 cm. The Froude number is

=
0 5

10× 0 02 = 1 1 and 2 = 1 2
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which is just super-critical, and we can easily imagine it to have many waves and disturbances on it due
to irregularities in the gutter.

It is clear that 2 expresses the scale of the importance of kinetic energy to potential energy, even
if not in a 1 : 1 manner (the factor of 1 2). It seems that 2 is a better expression of the relative
importance than the traditional use of . In fact, we suspect that as it always seems to appear in the form
2 = 2 , we could de ne an improved Froude number, improved =

2 , which explicitly
recognises (a) that 2 is more fundamental than , and (b) that it is the weighted value of 2

over the whole section, 2, which better expresses the importance of dynamic contributions. However,
we will use the traditional de nition = . In tutorials, assignments and exams, unless advised
otherwise, you may assume = 1, as has been almost universally done in textbooks and engineering
practice. However we will retain as a parameter in these lecture notes, and we recommend it also in
professional practice. Retaining it will, in general, give more accurate results, but also, retaining it while
usually not being quite sure of its actual value reminds us that we should not take numerical results as
accurately or as seriously as we might. Note that, in the spirit of this, we might well use 10 in
practical calculations!

Rectangular channel

There are some special simple features of rectangular channels. These are also applicable to wide chan-
nels, where the section properties do not vary much with depth, and they can be modelled by equivalent
rectangular channels, or more usually, purely in terms of a unit width. We now nd the conditions for
critical ow in a rectangular section of breadth and depth . We have = . From equation (2.3) the
condition for critical ow for this section is:

2

2 3
= 1 (2.7)

but as = , this is the condition
2

= 1 (2.8)

Some useful results follow if we consider the volume ow per unit width :

= = = (2.9)

Eliminating from (2.7) or from (2.8) or simply using (2.6) with = for the rectangular section
gives the critical depth, when is a minimum:

=

µ
2
¶1 3

(2.10)

This shows that the critical depth for rectangular or wide channels depends only on the ow per unit
width, and not on any other section properties. As for a rectangular channel it is obvious and convenient
to place the origin on the bed, such that = . Then equation (2.1) for critical conditions when is a
minimum, = becomes

= +
2

2

2
= +

2

2

2 2
= +

2

2

1
2

and using equation (2.10) to eliminate the 2 term:

= +
3

2

1
2
=
3

2
or, =

2

3
(2.11)

2.4 Water level changes at local transitions in channels

Now we consider some simple transitions in open channels from one bed condition to another.
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Sub-critical ow over a step in a channel or a narrowing of the channel section: Consider the

1 2

Figure 2-3. Subcritical ow passing over a rise in the bed

Surface
elevation

Head =

Upstream section

Constriction

Critical constriction

1

2

4

3

¾

Figure 2-4. Head/Surface-elevation relationships for three cross-sections

ow as shown in Figure 2-3. At the upstream section the ( ) diagram can be drawn as indicated in
Figure 2-4. Now consider another section at an elevation and possible constriction of the channel. The
corresponding curve on Figure 2-4 goes to in nity at the higher value of min and the curve can be shown
to be pushed to the right by this raising of the bed and/or a narrowing of the section. At this stage it is not
obvious that the water surface does drop down as shown in Figure 2-3, but it is immediately explained
if we consider the point 1 on Figure 2-4 corresponding to the initial conditions. As we assume that no
energy is lost in travelling over the channel constriction, the surface level must be as shown at point 2
on Figure 2-4, directly below 1 with the same value of , and we see how, possibly against expectation,
the surface really must drop down if subcritical ow passes through a constriction.

Sub-critical ow over a step or a narrowing of the channel section causing critical ow: Consider

14



Open channel hydraulics John Fenton

now the case where the step is high enough and/or the constriction narrow enough that the previously
sub-critical ow is brought to critical, going from point 1 as before, but this time going to point 2’ on
Figure 2-4. This shows that for the given discharge, the section cannot be constricted more than this
amount which would just take it to critical. Otherwise, the ( ) curve for this section would be moved
further to the right and there would be no real depth solutions and no ow possible. In this case the

ow in the constriction would remain critical but the upstream depth would have to increase so as to
make the ow possible. The step is then acting as a weir, controlling the ow such that there is a unique
relationship between ow and depth.

Super-critical ow over a step in a channel or a narrowing of the channel section: Now consider
super-critical ow over the same constriction as shown in Figure 2-5. In this case the depth actually
increases as the water passes over the step, going from 3 to 4, as the construction in Figure 2-4 shows.

3

4

Figure 2-5. Supercritical ow passing over a hump in the bed.

The mathematical problem in each of these cases is to solve an equation similar to (2.2) for 2, expressing
the fact that the head is the same at the two sections:

2

2 2
1( 1)

+ 1| {z }
1

=
2

2 2
2( 2)

+ 2| {z }
2

(2.12)

As the relationship between area and elevation at 2 is different from that at 1, we have shown two
different functions for area as a function of elevation, 1( 1) and 2( 2).

Example: A rectangular channel of width 1 carries a ow of , with a depth 1. The channel
section is narrowed to a width 2 and the bed raised by , such that the ow depth above the bed
is now 2. Set up the equation which must be solved for 2.

Equation (2.12) can be used. If we place the datum on the bed at 1, then 1 = 1 and 1( 1) =

1 1 = 1 1. Also, 2 = + 2 and 2( 2) = 2 ( 2 ) = 2 2. The equation becomes

2

2 2
1
2
1

+ 1 =
2

2 2
2
2
2

+ + 2 to be solved for 2, OR,

2

2 2
1
2
1

+ 1 =
2

2 2
2 ( 2 )2

+ 2 to be solved for 2

In either case the equation, after multiplying through by 2 or 2 respectively, becomes a cubic,
which has no simple analytical solution and generally has to be solved numerically. Below we
will present methods for this.

2.5 Some practical considerations

2.5.1 Trapezoidal sections
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