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depth of equivalent rectangular stress block.

area cnclosed by outside perimeter of con-
crete cross section.

gross area of section, in.2

arca of shear reinforeement parallel 1o lex-
ural tension reinforcement, in.?

Effective cross-sectional area within a joint,

in.? in a plane parallel to plane of reinforce-

menl generating shear in the joint. The joint

depth shall be the overall depth of the column.

Where a beam frames into a support of larger

width, the clfective width of the joint shall not

exceed the smaller of:

{a) beam width plus the joint depth

(b} twice the smaller perpendicular distance
from the longitudinal axis of the beam to
the column side.

total arca of longitudinal reinforcement to re-
. - . 1
$15t LOTS100, 1IN

arca of reinforcement in bracket or corbel re-
sisting tensile force N, in.2

gross area enclosed by shear flow path, in.?

area enclosed by centerline of the outermost
closed transverse torsional reinforcement, in.2

arca of prestressed reinforcement in tension
- 1
zone, in.”

area of nonprestressed tension reinforcement,
. ¥
in.*

area of compression reinforcement, in.>

total cross-sectional area of transverse rein-
forcement (including cross-ties) within spacing
s and perpendicular 1o dimension &,

arca ol one leg of a closed stirrup resisting tor-
sion within a distance s, in.?

total cross-sectional area of transverse rein-
[orcement (stirrup or tic) within a spacing s
and perpendicular to plane of bars being
spliced or developed, in.?

area of shear reinforcement within a distance
5. or area of shear reinforcement perpendicu-
lar to flexural tension reinforcement within a
distance s for deep flexural members, in.?

area of shear-friction reinforcement. in.2

area of shear reinforcement parallel to flex-
ural tension reinforcement within a distance
55, 0.2

width of compression face of member, in.
perimeter of critical section for stabs and foot-
ings, n,
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width of that part of cross section containing
the closed stirrups resisting torsion.

width of cross section at contact surface being
investigated [or horizontal shear.

wch width, or diameter of circular section, in.

distance from extreme compression fiber to
neutral axis, in.

size of rectangular or equivalent rectangular
column, capital, or bracket measured in the di-
rection of the span for which moments are
being determined, in.

size of reclangular or cquivalent rectangular
column, capital, or bracket measured trans-
verse Lo the direction of the span for which
moments are being determined, in.

distance from extreme compression fiber to
centroid of tension reinforcement, in.
distance from exlreme compression liber to
centroid of compression reinforcement, in.

nominal diameter of bar, wirc, or prestressing
strand, in,

thickness of concrete cover measured from ex-
treme tension fiber to center of bar or wirc lo-
cated closcst thereto, in.

distance from cxtreme compression fiber 1o
centroid of prestressed reinforcement.

cceentricity of load parallel to axis of member
measured from centroid of cross scction.

modulus of elasticity of concrete, psi.
modulus of clasticity of bar reinforcement, psi.

modulus of clasticity of prestressing reinforce-
ment.

specified 28-day compressive strength of con-
crete, psi.

average strength to be used as basis for select-
ing concrete proportions, psi.

required average compressive strength of con-
crete used as the basis for selection of con-
crete proportions, psi.

square root of specified compressive strength
of concrete, psi.

compressive strength ofconcrete at time of
initial prestress, psi.

square root of compressive strength of con-
crete at time of initial prestress, psi.

average splitting tensile strength of light-
weight aggregate concrete, psi.
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= stress due to unfactored dead load, al cxtreme

fiber of section where Lensile stress is caused
by externally applied loads, psi.

compressive stress in concrete due Lo cffective
prestress forces only (alter allowance for all
prestress losses) at extreme fiber of section
where tensile stress is caused by externally ap-
plied loads, psi.

stress in prestressed reinforcement at nominal
strength,

specified tensile strength of prestressing ten-
dons, psi.

specified vield strength of prestressing ten-
dons, psi.

modulus of rupture of concrete, psi.

tensile strenglh of concrete, psi.

= specified yield strength of nonprestressed re-

mfoercement, psi.
specilied yield strength of transverse, rein-
forcement, psi.

overall thickness of member, in.

moment of inertia of section resisting exter-
nally applied factored loads, in.?

moment of inertia about centroidal axis of
gross section of beam, in.?

moment of inertia of cracked section trans-
formed to concrete, in.?

cllcctive moment of inertia for computation
of deflection, in.?

moment ol inertia of gross concrete section
about centroidal axis, neglecting reinforce-
ment, in?

effcctive length factor for compression mem-
bers.

flexural stiffness of beam; moment per unit ro-
tation.

flexural stiffness of column; moment per unit
rotation,

flexural stiffness of equivalent column; mo-
ment per unit rotation.

flexural stiffness of slab; moment per unit ro-
tation.

torsional stiffness of torsicnal member; mo-
ment per unit rotation,

development length of standard hook in ten-
sion, measurced [rom critical scetion to outside
end of hook (straight embedment length be-
tween critical section and start of hook [point
of tangency| plus radius of bend and one bar
diameter). in.

= 1,;, x applicable modification factors.

maximum moment in member at stage deflec-
tion is computed.
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P

factored moment to be used for design of
compression member.,

moment due to dead load.
cracking moment.
nominal moment strength,

maximum factored moment at section duc 1o
externally applied loads.

factored moment at section.
modular ratio of elasticity,
EJE or E er’ E.

factored axial load normal to cross section oc-
curring simultaneously with V; to be taken as
positive for compression, negative for tension,
and o include cffects of tension due to creep
and shrinkage.

factored tensile force applied at top of bracket
or corbel acting simultaneously with ¥V, 1o be
laken as positive tor tension,

nominal axial load strength at balanced strain
conditions.

critical buckling load.

nominal axial load strength at given eccentric-
ity.

outside perimeter of the concrete cross-sce-
tion A, in.

perimeter of centerline of outermost closed
transverse torsional reinforcement, in.

radius of gyration of cross section of a com-
pression member.,

spacing of shear or torsion reinforcement in
direct parallel to longitudinal reinforcement,
in.

thickness of a wall of a hollow section, in.
factored torsional moment al scclion.
nominal shear strength provided by concrele.

nominal shear strength provided by concrete
when diagonal cracking results from combined
shear and moment.

neminal shear strength provided by conerete
when diagonal cracking results from excessive
principal tensile stress in web,

shear force at section duc 1o unfaciored dead
load.

vertical component of effective prestress force
at section.

nominal shear strength provided by shear re-
inforcement.

factored shear force at section.
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